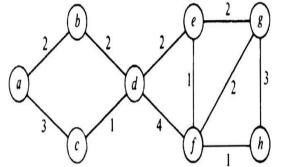
Code No: 156AD JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B. Tech III Year II Semester Examinations, February - 2023 ALGORITHM DESIGN AND ANALYSIS (Information Technology)

Time: 3 Hours

Max. Marks: 75

Note: i) Question paper consists of Part A, Part B.

- ii) Part A is compulsory, which carries 25 marks. In Part A, Answer all questions.
- iii) In Part B, Answer any one question from each unit. Each question carries 10 marks and may have a, b as sub questions.


$\mathbf{PART} - \mathbf{A}$

	(25 N	(larks)
		,
1.a)	Define Little oh notation.	[2]
b)	Write the application area of divide and conquer strategy.	[3]
c)	What is collapsing find?	[2]
d)	Define Chromatic number. Give one example.	[3]
e)	What is the beauty of dynamic programming?	[2]
f)	How many possible binary trees with n nodes, where n=3, draw them.	[3]
g)	Define spanning tree.	[2]
h)	List the application area of Greedy approach.	[3]
i)	What is E-node? Give an example.	[2]
j)	Compare and contrast deterministic algorithms and non-deterministic algorithms.	[3]
	Stuff.	
	PART – B	
	(50 N	(Iarks)
	Nou	
2.a)	Write an Iterative algorithm for binary search. What is its best case analysis?	
b)	Write any five rules to define an algorithm.	[5+5]
	OR	
3.a)	What is an algorithms? List the properties of an algorithm.	
b)	Write the worst case analysis of quick sort with suitable example.	[5+5]
4.a)	Write the union and find algorithms.	
b)	Explain the 4-Queens problem.	[5+5]
,	OR	
5.a)	Compare and contrast divide and conquer approach with dynamic programming.	
b)	Explain the sum of subset problem.	[5+5]
,	1 1	
6.a)	Consider n=4 & (q1,q2,q3,q4)=(do, if, int, while) the values for p's & q's are give	en as
,	p(1:4)=(3,3,1,1) & q(0:4)=(2,3,1,1,1). Construct the Optimal Binary Search tree.	
b)	Define backtracking. List the advantages of it.	[5+5]
,	OR	
7.a)	Write the general method for dynamic programming.	
b)	Find an Optimal Solution to the knapsack instance n=7, m=15,	
,	(P1,P2P7)=(10,5,15,7,6,18,3) and $(W1,W2W7)=(2,3,5,7,1,4,1)$.	[5+5]

Download all NOTES and PAPERS at StudentSuvidha.com

R18

8.a) Find the minimum cost spanning tree for the following graph using kruskals algorithm.

b) What is the need of Greedy approach?

[7+3]

9.a) Consider the following jobs, deadlines and profits. Use the scheduling with deadline algorithm to maximize the total profit.

OR

	1	
Job	deadline	profit
1	2	40
2	4	15
3	3	60
4	2	20
5	3	10
6	1 .	45
7	1	55
staat *	ath mrahlan	with an illustrative a

b)	Explain Single source shortest path problem with an illustrative example.	[5+5]			
10.a)	Define Cook's theorem and prove it.				
b)	Define NP-Hard problem. Explain it's time complexity.	[5+5]			
OB					
11.a)	Explain P,NP and P-Complete classes with suitable examples.				
	Explain the strategy to prove that a problem is NP-Hard.	[5+5]			

--00000----

Download all NOTES and PAPERS at StudentSuvidha.com